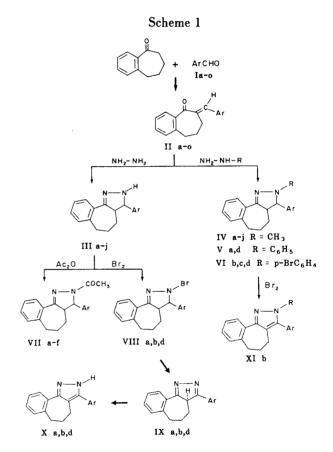
Hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles and Related Compounds

N. R. El-Rayyes* and N. H. Bahtiti

Department of Chemistry, Kuwait University, Kuwait Received June 28, 1988


Arvl aldehydes I reacted with 1-benzosuberone to yield the corresponding 2-arylidene-1-benzosuberones II. Condensation of II with hydrazine and its derivatives provided the substituted 2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles III-VI respectively. The structures of all products were assigned by chemical and spectroscopic methods.

J. Heterocyclic Chem., 26, 209 (1989).

The reaction of hydrazines with different chalcones was previously reported [1-4]. In the present work different aryl aldehydes Ia-o were condensed with 1-benzosuberone to give the corresponding 2-arylidene-1-benzosuberones IIa-o. The structure of these chalcones is evident from the infrared, electronic and ¹H nmr spectral data [5].

The chalcones IIa-m were condensed with hydrazine, methylhydrazine, phenylhydrazine, and p-bromophenylhydrazine to provide the corresponding 3-aryl-2,3,3a,4,5,6hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles III, 2methyl-3-aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles IV, 2-phenyl-3-aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles V, and 2-(pbromophenyl)-3-aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles VI (Scheme 1). The structures of the products were assigned from their spectral and chemical properties. Thus the infrared spectra show stretching vibrations characteristic for C=N and NH groups [4,6]. The electronic spectra of compounds III-VI show absorption maxima ascribed to $\pi \to \pi^*$ and $n \to \pi^*$ transitions. The latter can be correlated to the Ar-C=N-N-X chromophores [1,4,7]. The long wavelength band is affected by the nature of both Ar and X. A bathochromic shift can be detected by going from compound III to VI [1].

The nmr-spectra of III-VI revealed four main chemical shifts. The (-CH₂CH₂CH₂CH-) moieties were represented by multiplets in the range of δ 1.66-3.00 ppm. The doublets representing H_3 appeared in the region δ 3.30-5.41 ppm (J = 12-14 Hz). The N-H protons of compounds III showed one signal in the range of δ 4.66-5.86 ppm, which disappeared upon deuteration. However, the N-CH₃ groups of compounds IV were represented by 3H singlets in the range of δ 2.20-2.86 ppm. The aromatic hydrogens showed multiplets in the range of δ 5.83-8.43 ppm [4,8,9]. The mass spectra is also in good accord with the structure of compounds III. Thus IIIb,c,d,h show m/e at 307 (100%), 312 (100%), 296 (100%) and 306 (100%), respectively representing both molecular ion and base peaks [4,10].

Compound	Ar
I-Xa	p-OCH ₃ -C ₆ H ₄
I-IV, VII-XIb	$p ext{-} ext{NO}_2 ext{-} ext{C}_6 ext{H}_4$
I-VIIc	C ₁₀ H ₇ (1-naphthyl)
I, IV, Vd, VIb	C_6H_8
I-IV, VIIe	2,6-Cl ₂ -C ₆ H ₃
I-IVf	C ₄ H ₃ S (2-thienyl)
I, II, IVg	C_8H_7 (3-indolyl)
I-IVh	C ₇ H ₆ O ₂ (3,4-methylenedioxy- phenyl-)
I-II, IVi	C ₅ H ₄ N (3-pyridyl)
I-IVj	C ₄ H ₃ S (3-thienyl)

The chemical reactivity of compounds III can serve as a tool for their structural elucidation. Thus acetylation led to the formation of the corresponding 2-acetyl-3-aryl-2,3,-3a.4.5.6-hexahvdrobenzo[6,7]cvclohepta[1,2-c]pyrazoles VIIa-f. The structure of these products can be predicted by their chemical and spectral analyses. Thus, the infrared spectra of compounds VII show absorption bands in the regions 1600 cm⁻¹ and 1670 cm⁻¹ attributed to C=N and C=0 of the acetyl group [9]. The electronic spectra revealed absorptions that can be assigned to $\pi \to \pi^*$ transitions of the N-acetyl chromophores [7]. The nmr-spectra were void of signals representing the N-H protons, and showed 3H singlets which stand for the protons of the N-acetyl groups. The mass spectrum of VIIb showed a molecular ion peak at m/e 305 (100%) which stands also for the base peak.

The condensed pyrazoles IIIa,b were also reacted with bromine to produce the N-bromo derivatives VIIIa,b. Dehydrobromination of these products gave the condensed pyrazoles Xa,b. The structure of compounds VIII and X was deduced by chemical and spectral analyses. The formation of the pyrazoles Xa,b seems to proceed via the formation of the intermediates IXa,b followed by 1,3-intramolecular proton shift [11]. It is noteworthy to mention that the bromination of IIId and IVb gave directly the corresponding condensed tetrahydropyrazole Xd and N-methyl anolog XIb via bromination, [12].

The formation of the compounds III-VI seems to proceed by 1,2-addition of the hydrazines to chalcones to produce the corresponding hydrazones, followed by cyclization [1-4,7,13,14].

EXPERIMENTAL

General Procedure for the Preparation of 2-Arylidene-1-benzosuberones IIa-o.

Equimolar amounts of the aldehydes Ia-o (0.03 mole) and 1-benzosuberone (0.03 mole) were dissolved in 50 ml ethanol. The mixture was treated with 1.0 g of potassium hydroxide and stirred for 1-2 hours by room temperature. The product was filtered and recrystallized from ethanol.

2-p-Nitrobenzylidene-1-benzosuberone (IIb).

This compound was obtained in 96% yield as yellowish needles (ethanol), mp 140-141°; ir (potassium bromide): C = 0 1660, C = C 1610, 1595 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.60-3.00 (bm, 6H, CH₂CH₂CH₂), 7.13-8.26 ppm (bm, 9H, ArH + CH); uv (ethanol): λ max 271 nm (ϵ 20040).

Anal. Calcd. for $C_{10}H_{15}NO_3$ (293.32): C, 73.70; H, 5.15; N, 4.77. Found: C, 73.64; H, 5.23; N, 4.72.

2-(2,6-Dichlorobenzylidene)-1-benzosuberone (IIe).

This compound was obtained in 78% yield as colourless needles from ethanol, mp 136°; ir (potassium bromide): C=0 1660, C=C 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.60-3.07 (bm, 6H, $CH_2CH_2CH_2$), 7.25-7.90 ppm (bm, 8H, Ar-H + CH); uv (ethanol): λ max 262 nm (ϵ 10525).

Anal. Calcd. for C₁₈H₁₄Cl₂O (317.30): C, 68.13; H, 4.44. Found: C, 67.76; H, 4.48.

2-(3,4-Methylenedioxybenzylidene)-1-benzosuberone (IIh).

This compound was obtained as colourless needles from ethanol (98%) mp 124°; ir (potassium bromide): C = 0 1670, C = C 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.73-3.13 (bm, 6H, $CH_2CH_2CH_2$), 6.00 (S, 2H, OCH_2O), 6.72-7.80 ppm (bm, 8H, Ar-H + CH); uv (ethanol): λ max 344 nm (ϵ 8510), 300 nm (ϵ 5130), 259 nm (ϵ 12265).

Anal. Calcd. for $C_{19}H_{16}O_3$ (292.34): C, 78.06; H, 5.51. Found: C, 78.23; H, 5.56.

2-(m-Nitrobenzylidene)-1-benzosuberone (IIm).

This compound was obtained as yellow needles from ethanol (96%) mp 98°; ir (potassium bromide): C=0 1668, C=C 1610 cm⁻¹; ¹H nmr (deuteriochloroform): δ 2.00-3.10 (bm, 6H, CH₂CH₂CH₂), 7.20-8.40 ppm (bm, 9H, ArH + CH); uv (ethanol): λ max 268 nm (ϵ 18520).

Anal. Calcd. for $C_{18}H_{15}NO_3$ (293.32): C, 73.70; H, 5.15; N, 4.77. Found: C, 73.54; H, 5.18; N, 4.78.

2-(2,4-Dimethoxybenzylidene)-1-benzosuberone (IIn).

This compound was obtained as colourless needles from ethanol (80%) mp 106° ; ir (potassium bromide): C=0 1660, C=C 1605 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.86-3.10 (bm, 6H, CH₂CH₂CH₂), 3.95 (δ , 6H, 2-OCH₃), 6.46-8.13 ppm (bm, 8H, ArH + CH); uv (ethanol): λ max 348 nm (ϵ 11740), 300 nm (ϵ 6070), 254 nm (ϵ 14000).

Anal. Calcd. for C₂₀H₂₀O₃ (308.38): C, 77.89; H, 6.54. Found: C, 77.75; H, 6.61.

2-p-Bromobenzylidene-1-benzoberone (IIo).

This compound was obtained as white needles from ethanol (96%) mp 99°; ir (potassium bromide): C = 0 1660, C = C 1590 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.80-3.00 (bm, 6H, CH₂CH₂CH₂), 7.03-7.87 ppm (bm, 9H, ArH + CH); uv (ethanol): λ max 303 nm (ε 19700).

Anal. Calcd. for C_{1e}H_{1s}BrO (327.22): C, 66.07; H, 4.62; Br, 24.42. Found: C, 65.95; H, 4.62; Br, 24.59.

General Procedure for the Preparation of 3-Aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles IIIa-j.

To a solution of 0.02 mole of 2-arylidene-1-benzosuberone II in 50 ml ethanol, 0.06 mole of hydrazine hydrate were added. The mixture was refluxed for 3-4 hours. The product was obtained after concentration of the solution and crystallized from cyclohexane.

3-(p-Methoxyphenyi)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (IIIa).

This compound was obtained as white needles from cyclohexane (88%) mp 114-115°; ir (potassium bromide): N-H 3340, C = N 1620 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.70-3.00 (bm, 7H, $CH_2CH_2CH_2CH_3$), 3.76 (S, 3H, OCH₃) 4.26 (d, 1H, CH, J_{Hz} 12), 4.73 (δ , 1H, NH), 6.66-7.80 ppm (bm, 8H, ArH + CH); uv (ethanol): λ max 278 nm (ϵ 11520).

Anal. Calcd. for $C_{19}H_{20}N_2O$ (292.38): C, 78.05; H, 6.90; N, 9.58. Found: C, 77.91; H, 7.00; N, 9.62.

3-(p-Nitrophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (IIIb).

This compound was obtained as yellow prisms from cyclohexame (74%) mp 162°; ir (potassium bromide): N-H 1668, C=N 1609 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.73-2.90 (bm, 7H, CH₂CH₂CH₂CH₂CH), 4.56 (d,

1H, CH, J_{Hz} 12), 5.03 (s, 1H, N-H), 7.06-8.26 ppm (bm, 8H, Ar-H); (ethanol): λ max 277 nm (ϵ 16770); ms: m/e 307 (M²), 185 ($C_{12}H_{12}N_2^*$).

Anal. Calcd. for $C_{18}H_{17}N_3O_2$ (307.35): C, 70.35; H, 5.54; N, 13.73. Found: C, 70.52; H, 5.65; N, 13.79.

 $3-(\alpha-\text{Naphthyl})-2,3,3a,4,5,6-\text{hexahydrobenzo}[6,7]\text{cyclohepta}[1,2-c]\text{pyrazole}$ (IIIc).

Anal. Calcd. for C₂₂H₂₀N₂ (312.54): C, 84.55; H, 6.41; N, 9.00. Found: C, 84.43; H, 6.45; N, 8.92.

3-(p-Chlorophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (IIId).

This compound was obtained as white prisms from cyclohexane (96%) mp 111°; ir (potassium bromide): N-H 3360, C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.32-4.00 (bm, 7H, $CH_2CH_2CH_2CH_3CH_4$, 4.66 (d, 1H, CH, J_{Hz} 12), 5.86 (s, 1H, N-H), 7.4-8.53 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 277 nm (ϵ 10420); ms: (m/e) 296 (M²), 185 ($C_{12}H_{12}N_2$ *).

Anal. Calcd. for C₁₈H₁₇ClN₂ (298.89): C, 72.80; H, 5.74; N, 9.50; Cl, 11.94. Found: C, 72.70; H, 5.83; N, 9.42; Cl, 12.13.

3-(2,6-Dichlorophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (IIIe).

This compound was obtained as white prisms from cyclohexane (71%) mp 149-150°; ir (potassium bromide): N-H 3310, C=N 1588 cm⁻¹; 'H nmr (deuteriochloroform): δ 1.76-3.53 (bm, 7H, CH₂CH₂CH₂CH₃CH₃CH, 5.41 (d, 1H, CH, J_{H2} 12), 5.73 (s, 1H, N-H), 7.0-7.90 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 282 nm (ε 6010).

Anal. Calcd. for $C_{18}H_{16}Cl_2N_2$ (331.27): C, 65.20; H, 4.80; N, 8.50; Cl, 21.40. Found: C, 65.15; H, 4.90; N, 8.56; Cl, 21.32.

3-(2-Thienyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (IIII).

This compound was obtained as brown prisms from cyclohexane (93%) mp 82°; ir N-H 3320, C=N 1604, C=C 1580 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.66-3.00 (bm, 7H, CH₂CH₂CH₂CH), 4.7 (d, 1H, CH, J_H. 12), 5.66 (s, 1H, N-H), 6.90-8.00 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 282 nm (ϵ 15480); λ max 215 nm (ϵ 20810).

Anal. Calcd. for C₁₆H₁₆N₂S (268.37); C, 71.60; H, 6.00; N, 10.43; S, 11.95. Found: C, 71.40; H, 5.95; N, 10.26; S, 11.90.

3-(1-Methylpyrrol-2-yl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (IIIg).

This compound was obtained as white needles from cyclohexane (94%) mp 98°; ir (potasssium bromide): N-H 3310, C = N 1615 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.80-3.20 (bm, 7H, $CH_2CH_2CH_2CH_3CH)$, 3.66 (s, 3H, N-CH₃), 4.45 (d, 1H, CH, J_H , 12), 5.16 (s, 1H, N-H), 5.83-7.80 ppm (bm, 7H, Ar-H); uv (ethanol); λ max 277 nm (ϵ 9840), 215 nm (ϵ 15290).

Anal. Calcd. for C₁₇H₁₈N₃ (265.36): C, 76.94; H, 7.21; N, 15.83. Found: C, 76.81; H, 7.30; N, 15.89.

3-(3,4-Methylenedioxyphenyl)-2,3,3a,4,5,6-hexahyldrobenzo[6,7]cyclohepta[1,2-c]pyrazole (IIIh).

This compound was obtained as colourless prisms from cyclohexane (82%) mp 95°; ir (potassium bromide): N-H 3330, C=N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.66-2.93 (bm, 7H, CH₂CH₂CH₂CH, 4.30 (d, 1H, CH, J_H, 12), 5.97 (s, 2H, OCH₂), 4.66 (s, 1H, N-H), 6.80-7.93 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 286 nm (ϵ 12930); 222 nm (ϵ 10960); ms: (m/e), 306 (M²), 185 (C₁₂H₁₂N₂*).

Anal. Calcd. for C₁₉H₁₈N₂O₂ (306.40): C, 74.55; H, 5.92; N, 9.14. Found: C, 74.95; H, 6.10; N, 8.70.

3-(m-Nitrophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (IIIi).

This compound was obtained as yellow needles from cyclohexane

(62%) mp 144°; ir (potassium bromide): N-H 3340, C=N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.76-3.26 (bm, 7H, CH₂CH₂CH₂CH₂CH), 4.63 (d, 1H, CH, J_{Hz} 13), 5.53 (s, 1H, N-H), 7.26-8.43 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 266 nm (ϵ 16585).

Anal. Calcd. for $C_{16}H_{17}N_5O_2$ (307.35): C, 70.35; H, 5.54; N, 13.73. Found: C, 70.25; H, 5.63; N, 13.51.

3-(3-Thienyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (IIIj).

This compound was obtained as yellow needles from cyclohexane (86%) mp 71°; ir potassium bromide): N-H 3340, C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.66-3.13 (bm, 7H, CH₂CH₂CH₂CH), 4.5 (d, 1H, CH, J_{Hz} 12), 5.8 (s, 1H, N-H), 7.03-7.93 ppm (bm, 11H, Ar-H); uv (ethanol): λ max 280 nm (ϵ 10480), 218 nm (ϵ 13420).

Anal. Calcd. for C₁₆H₁₆N₂S (268.37): C, 71.60; H, 6.00, N, 10.43; S, 11.95. Found: C, 71.45; H, 6.11; N, 10.28; S, 11.83.

General Procedure for the Preparation of 3-Aryl-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles IVa-j.

To a solution of 0.02 mole of 2-arylidene-1-benzosuberone in 50 ml of ethanol, 0.06 mole of methyl hydrazine was added and stirred at cold for a period of 10 minutes, and the mixture was then refluxed for 3-4 hours. The solid product obtained was recrystallised from methanol.

3-(p-Methoxyphenyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclo-hepta[1,2-c]pyrazole (IVa).

This compound was obtained as white needles from methanol (85%) mp 113-115°; ir (potassium bromide): C = N 1612, C = C 1588 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.60-2.10 (bm, 7H, CH₂CH₂CH₂CH), 2.76 (s, 3H, N-CH₃), 3.36 (s, 3H, OCH₃), 3.55 (d, CH, J_{H2} 14), 6.66-7.96 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 290 nm (ϵ 13240), 221 nm (ϵ 18650).

Anal. Calcd. for C₂₀H₂₂N₂O (306.41): C; 78.40; H, 7.20; N, 9.20. Found: C, 78.34; H, 7.42; N, 9.19.

3-(p)-Nitrophenyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (IVb).

This compound was obtained as yellow prisms (82%) mp 182°; ir (potassium bromide): C = N 1608 cm⁻¹; 'H nmr (deuteriochloroform): δ 1.66-2.33 (bm, 7H, CH₂CH₂CH₂CH), 2.76 (s, 3H, N-CH₃), 3.55 (d, 1H, CH, J_{Hz} 14), 7.10-8.26 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 287 nm (ϵ 68240), 215 nm (ϵ 4960).

Anal. Calcd. for C₁₉H₁₉N₃O₂ (321.46): C, 70.90; H, 5.92; N, 13.12. Found: C, 71.27; H, 5.97; N, 13.30.

3-(1-Naphthyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (IVc).

This compound was obtained as white prisms (70%) mp 117°; ir (potassium bromide): C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.66-2.03 (bm, 7H, CH₂CH₂CH₂CH), 2.76 (s, 3H, N-CH₃), 4.36 (d, 1H, CH, I_{H_1} 14), 7.00-8.26 ppm (bm, 11H, Ar-H); uv (ethanol): λ max 290 nm (ϵ 5540); ms: (m/e) 326 (M*), 199 (I_{18} H₁₈N₂*).

Anal. Calcd. for C₂₂H₂₂N₂ (326.54): C, 84.60; H, 6.75; N, 8.60. Found: C, 84.52; H, 6.88; N, 8.62.

3-Phenyl-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (IVd).

This compound was obtained as white prisms from methanol (75%) mp 80-81°; ir (potassium bromide): C = N 1600, C = C 1575 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.56-2.30 (bm, 7H, $CH_2CH_2CH_2CH$), 2.83 (s, 3H, N-CH₃), 3.66 (d, 1H, CH, J_{Hz} 14), 7.10-8.06 ppm (bm, 9H, Ar-H); uv (ethanol): λ max 297 nm (ϵ 11360), 222 nm (ϵ 9340).

Anal. Calcd. for C₁₉H₂₀N₂ (276.381): C, 82.58; H, 7.36; N, 10.18. Found: C, 82.34; H, 7.44; N, 10.24.

 $3-(2,6-Dichlorophenyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7] cyclohepta[1,2-c] pyrazole ({\bf IVe}).$

This compound was obtained as white needles from methanol (71%) mp 149-150°; ir (potassium bromide): C=N 1580 cm⁻¹; ¹H nmr (deu-

teriochloroform): δ 1.66-2.20 (bm, 7H, CH₂CH₂CH₂CH), 2.66 (s, 3H, N-CH₃), 4.66 (d, 1H, CH, J_{Hz} 12), 7.13-7.80 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 294 nm (ϵ 1200).

Anal. Calcd. for $C_{19}H_{18}Cl_2N_2$ (331.27): C, 66.09; H, 5.25; N, 8.11; Cl, 20.53. Found: C, 66.04; H, 5.28; N, 8.07; Cl, 20.70.

3-(2-Thienyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (IVf).

This compound was obtained as yellow prisms from methanol (76%) mp 75-76°; ir (potassium bromide): C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.60-2.13 (bm, 7H, CH₂CH₂CH₂CH₂CH, 2.80 (s, 3H, N-CH₃), 3.73 (d, 1H, CH, J_{Hz} 14), 7.06-7.96 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 297 nm (ϵ 11420), 215 nm (ϵ 14010).

Anal. Calcd. for $C_{17}H_{18}N_2S$ (282.26): C, 72.34; H, 6.42; N, 9.92; S, 11.36. Found: C, 72.27; H, 6.48; N, 9.83; S, 11.48.

3-(3-Indoly)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (IVg).

This compound was obtained as white prisms from methanol (90%) mp 172°; ir (potassium bromide): C = N 1580 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.63-2.70 (bm, 7H, CH₂CH₂CH₂CH), 2.83 (s, 3H, N-CH₃), 3.56 (s, 1H, N-H), 3.85 (d, 1H, CH, J_{Hz} 14), 7.0-8.0 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 286 nm (ϵ 13690), 224 (ϵ 42860).

Anal. Calcd. for $C_{21}H_{20}N_3$ (315.60): C, 79.92; H, 6.45; N, 13.37. Found: C, 79.88; H, 6.21; N, 13.29.

3-(3,4-Methylenedioxyphenyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]-cyclohepta[1,2-c]pyrazole (IVh).

This compound was obtained as white prisms from methanol (75%) mp 126°; ir (potassium bromide): C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.86-2.60 (bm, 7H, $CH_2CH_2CH_2CH_3$, 2.86 (s, 3H, N- CH_3), 3.50 (d, 1H, CH_3 , 14), 5.86 (s, 2H, OCH_3O), 6.86-8.13 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 288 nm (ϵ 5040), 225 nm (ϵ 4220).

Anal. Calcd. for $C_{20}H_{20}N_2O_2$ (320.40): C, 75.00; H, 6.20; N, 8.80. Found: C, 75.00; H, 6.54; N, 8.76.

3-(3-Pyridyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]-pyrazole (**VIi**).

This compound was obtained as white needles from methanol (60%) mp 95-96°; ir (potassium bromide): $C = N \ 1602 \ cm^{-1}$; ¹H nmr (deuteriochloroform): $\delta \ 1.20$ -1.92 (bm, 7H, $CH_2CH_2CH_2CH_2$, 2.23 (s, 3H, N-CH₃), 3.3 (d, 1H, CH, $J_{Hz} \ 14$), 6.80-8.26 ppm (bm, 7H, Ar-H); uv (ethanol): $\lambda \ max \ 295 \ nm$ ($\epsilon \ 5250$); ms: (m/e) 277 (M²), 199 ($C_{13}H_{15}N_2$ ²), 183 ($C_{12}H_{10}N_2$ ²).

Anal. Calcd. for $C_{10}H_{10}N_3$ (277.37): C, 77.95; H, 6.42; N, 15.20. Found: C, 77.86; H, 6.80; N, 15.25.

3-(2-Thienyl)-2-methyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (IVj).

This compound was obtained as brown prisms from ethanol (84%) mp 64-65°; ir (potassium bromide): C = N 1610 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.60-2.13 (bm, 7H, CH₂CH₂CH₂CH), 2.83 (s, 3H, N-CH₃), 3.9 (d, 1H, CH, J_{Hz} 14), 6.86-8.00 ppm (bm, 7H, Ar-H); uv (ethanol): λ max 292 nm (ϵ 11140), 224 nm (ϵ 15150); ms: (m/e) 282 M*, 199 (C₁₃H₁₅N₂*).

Anal. Calcd. for $C_{17}H_{18}N_2S$ (282.34); C, 72.34; H, 6.42; N, 9.92; S, 11.36. Found: C, 72.28; H, 6.48; N, 9.82; S, 11.50.

General Procedure for the Preparation of 2-Acetyl-3-aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoles VIIa-f.

To a solution of 0.005 mole of 3-aryl-2,3,3a,4,5,6-hexahydrobenzo[6,7]-cyclohepta[1,2-c]pyrazoles IIIa-f in 20-30 ml of ethanol was added 0.01 mole of acetic anhydride (1 ml). The mixture was refluxed for 2 hours and poured on a mixture of methanol/water (5:5 ml). The product was recrystallized from methanol.

2-Acetyl-3-(p-methoxyphenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (VIIa).

White prisms of this compound were obtained from methanol (82%) mp 137°; ir (potassium bromide): C=0 1675, C=N 1620, C=C 1595 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.76-3.06 (bm, 7H, $CH_2CH_2CH_2CH_2$), 2.40 (s, 3H, $COCH_3$), 3.9 (d, 1H, CH_3 , H_4 , H_5 , H_6 , H_8 ,

Anal. Calcd. for C₂₁H₂₂O₂N₂ (334.59): C, 75.39; H, 6.63; N, 8.40. Found: C, 75.38; H, 6.78; N, 8.50.

2-Acetyl-3-(p-nitrophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (**VIIb**).

Yellow needles of this compound were obtained from methanol (99%) mp 197°, ir (potassium bromide): C=0 1670, C=N 1610 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.70-3.26 (bm, 7H, CH₂CH₂CH₂CH), 2.30 (s, 3H, COCH₃), 5.26 (d, 1H, CH, J_{Hz} 7), 7.06-8.33 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 270 nm (ϵ 22200), 214 nm (ϵ 13545); ms: (m/e) 349 (M²), 307 ($C_{1z}H_{1z}N_3O_2$ *), 185 ($C_{1z}H_{1z}N_z$ *).

Anal. Calcd. for $C_{20}H_{19}N_3O_3$ (349.39): C, 68.89; H, 5.50; N, 12.00. Found: C, 68.82; H, 5.60; N, 12.06.

2-Acetyl-3-(1-naphthyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (VIIc).

This compound was obtained as white needles from methanol (92%) mp 186-187°; ir (potassium bromide): C = O 1675, C = N 1600, cm^{-1} ; ¹H nmr (deuteriochloroform): δ 1.70-3.26 (bm, 7H, $CH_2CH_2CH_2CH_3$, 2.50 (s, 3H, $COCH_3$), 5.9 (d, 1H, CH, J_{Hz} 7), 7.10-8.06 ppm (bm, 11H, Ar-H); uv (ethanol): λ max 278 nm (ϵ 7095), 218 nm (ϵ 26350); ms: (m/e) 312 (M²), 185 ($C_{12}H_{12}N_2^*$).

Anal. Calcd. for C₂₄H₂₂N₂O₂ (354.45): C, 81.30; H, 6.30; N, 7.90. Found: C, 81.29; H, 6.27; N, 7.90.

2-Acetyl-3-(p-chlorophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (VIId).

This compound was obtained as white prisms from methanol (96%) mp 136°; ir (potassium bromide): C = O 1676 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.66-3.06 (bm, 7H, CH₂CH₂CH₂CH), 2.36 (s, 3H, COCH₃), 5.8 (d, 1H, CH, J_{Hz} 7), 7.00-8.00 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 277 nm (ϵ 14080), 215 nm (ϵ 20530).

Anal. Calcd. for $C_{20}H_{18}Cl_2N_2O$ (338.83): C, 70.89; H, 5.60; N, 8.26; Cl, 10.46. Found: C, 70.82; H, 5.71; N, 8.23; Cl, 10.59.

2-Acetyl-3-(2,6-dichlorophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (VIIe).

White prisms of this compound were obtained from methanol (83%) mp 222°; ir (potassium bromide): C=0 1670, C=N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.70-3.66 (bm, 7H, CH₂CH₂CH₂CH), 2.36 (s, 3H, COCH₃), 5.80 (d, 1H, CH, J_{Hz} 8), 7.00-8.00 ppm (bm, 7H, Ar-H), uv (ethanol): λ max 277 nm (ϵ 19780), 212 nm (ϵ 29120).

Anal. Calcd. for $C_{20}H_{18}Cl_2N_2O$ (373.30): C, 64.35; H, 4.90; N, 7.50; Cl, 19.00. Found: C, 64.28; H, 4.94; N, 7.52; Cl, 19.12.

2-Acetyl-3-(1-methylpyrrol-2-yl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (VIIf).

This compound was obtained as pale yellow prisms from methanol (72%) mp 119°; ir (potassium bromide): C = 0 1670, C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.73-3.36 (bm, 7H, CH₂CH₂CH₂CH₂CH), 2.23 (s, 3H, N-CH₃), 3.73 (s, 3H, COCH₃), 4.46 (d, 1H, CH, J_H, 7), 5.76-7.76 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 273 nm (ϵ 17910), 210 nm (ϵ 18860).

Anal. Calcd. for $C_{19}H_{21}N_3O$ (307.44): C, 74.23; H, 6.90; N, 13.67. Found: C, 74.09; H, 6.97; N, 13.58.

General Procedure for Bromination of Compounds IIIa,b,d,IVb.

To a solution of 1.0 g of compounds IIIa,b,d or IVb in 20 ml of carbon tetrachloride, bromine (0.4 ml) in 5 ml of carbon tetrachloride was added. The mixture was refluxed for 3 hours and the solution was concentrated. The product was recrystallized from methanol.

2-Bromo-3-(p-methoxyphenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (VIIIa).

This compound was obtained as white prisms from methanol (95%) mp 236-237°; ir (potassium bromide): C = N 1611 cm⁻¹; ¹H nmr (deuteriochloroform): δ 2.03-2.90 (bm, 7H, $CH_2CH_2CH_2CH_3$), 3.76 (s, 3H, $COCH_3$), 5.10 (d, 1H, CH, J_{Hz} 7), 6.46-7.90 ppm (bm, 8H, ArH); uv (ethanol): λ max 254 nm (ϵ 27540).

Anal. Calcd. for $C_{19}H_{19}BrN_2O$ (371.28): C, 61.46; H, 5.16; N, 7.50; Br, 21.50. Found: C, 61.20; H, 5.07; N, 7.50; Br, 21.75.

2-Bromo-3-(p-nitrophenyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (VIIIb).

3-(p-Chlorophenyl)-2,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (Xd).

This compound was obtained as white prisms from methanol (91%) mp 219°; ir (potassium bromide): (N-H) 3250, C = N 1615 cm⁻¹; ¹H nmr (deuteriochoroform): δ 2.00-2.96 (bm, 6H, $CH_2CH_2CH_2$), 5.40 (s, 1H, N-H), 7.10-7.83 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 255 nm (ϵ 21580).

Anal. Calcd. for C₁₈H₁₅ClN₂ (294.65): C, 73.34; H, 5.10; N, 9.50; Cl, 12.01. Found: C, 73.27; H, 5.10; N, 9.52; Cl, 11.92.

Dehydrobromination of Compounds VIIIa.b.

General Procedure.

To a solution of VIIIa,b (0.5 g) in 10-20 ml of methanol, 3 ml of pyridine was added. The solution was refluxed for 1.5 hours, and the solid product was obtained and recrystallized from methanol.

3-(p-Methoxyphenyl)-2,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (Xa).

This compound was obtained as white prisms from methanol (72%) mp 154-155°; ir (potassium bromide): N-H 3250, C=N 1618 cm⁻¹; ¹H nmr (deuteriochloroform): δ 2.20-2.72 (bm, 6H, CH₂CH₂CH₂), 3.06 (s, 3H, OCH₃), 6.66 (s, 1H, N-H), 6.80-7.86 ppm (bm, 11H, Ar-H); uv (ethanol): λ max 256 nm (ϵ 30150).

Anal. Calcd. for $C_{19}H_{18}N_2O$ (290.36): C, 78.50; H, 6.24, N, 9.60. Found: C, 78.50; H, 6.32; N, 9.56.

3-(p-Nitrophenyl)-2,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (Xb).

This compound was obtained as yellow prisms from methanol (81%), mp 221°; ir (potassium bromide): N-H 3230, C = N 1600 cm⁻¹; ¹H nmr (deuteriochloroform): δ 2.56-3.06 (bm, 6H, CH₂CH₂CH₂), 6.52 (s, 1H, N-H), 7.04-8.32 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 284 nm (ϵ 454545), 254 nm (ϵ 519480); ms: (m/e) 305 (M*) 258 [$C_{18}H_{14}N_2$ *], 183 [$C_{12}H_{10}N_2$ *].

Anal. Calcd. for $C_{18}H_{18}N_3O_2$ (305.35): C, 70.80; H, 4.95; N, 13.80. Found: C, 70.40; H, 5.22; N, 13.88.

2-Methyl-3-(p-nitrophenyl)-2,4,5,6-tetrahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (XIb).

This compound was obtained as yellow prisms from methanol (82%) mp 145-146°; ir (potassium bromide): C = N 1615 cm⁻¹; ¹H nmr (deuteriochloroform): δ 2.00-2.90 (bm, 6H, $CH_2CH_2CH_2$), 3.83 (s, 1H, N-CH₃), 7.13-8.4 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 255 nm (ϵ 9635), 304 nm (ϵ 4760)

Anal. Calcd. for $C_{19}H_{17}N_3O_2$ (319.36): C, 71.45; H, 5.36; N, 13.15. Found: C, 71.28; H, 5.41; N, 13.05.

General Procedure for the Preparation of Compounds Va,d and VIb,c,d.

To a solution of 0.01 mole of 2-arylidene-1-benzosuberone in 50 ml of ethanol, 0.03 mole of phenylhydrazine or p-bromophenylhydrazine was added with a few drops of sulphuric acid. The mixture was refluxed for

24 hours, and the solid product was recrystallized from cyclohexane.

3-(p-Methoxyphenyl)-2-phenyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazoline (Va).

This compound was obtained as yellow prisms from cyclohexane (45%) mp 110-112°; ir (potassium bromide): C = N 1620, C = C 1600 cm⁻¹; ¹H nmr (carbon tetrachloride): δ 1.63-3.00 (bm, 7H, CH₂CH₂CH₂CH₃CH₃, 3.66 (s, 3H, OCH₃), 4.5 (d, 1H, CH, J_H, 12), 6.26-7.68 ppm (bm, 13H, Ar-H); uv (ethanol): λ max 342 nm (ϵ 17800), 229 nm (ϵ 30000).

Anal. Calcd. for $C_{25}H_{24}N_2O$ (368.50); C, 81.48; H, 6.56. Found: C, 81.75; H, 6.21.

2,3-Diphenyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole (Vd).

This compound was obtained as pink prisms from cyclohexane (40%) mp 188-190°; ir (potassium bromide): C = N 1600 cm⁻¹; ¹H nmr (carbon tetrachloride): δ 1.53-3.00 (bm, 7H, CH₂CH₂CH₂CH), 4.66 (d, 1H, CH, J_{Hz} 7), 6.53-8.00 ppm (bm, 14H, Ar-H); uv (ethanol): λ max 337 nm (ϵ 56000), 298 nm (ϵ 30900), 240 nm (49000).

Anal. Calcd. for C₂₄H₂₂N₂O₂ (338.50): C, 85.17; H, 6.55; N, 8.27. Found: C, 85.02; H, 6.82; N, 7.88.

2-(p-Bromophenyl)-3-phenyl-2,3,3a,4,5,6-hexahydrobenzo[6,7]cyclohepta-[1,2-c]pyrazole (VIb).

This compound was obtained as pale yellow prisms from cyclohexane (40%) mp 128-130°; C = N 1590 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.40-3.00 (bm, 7H, CH₂CH₂CH₂CH), 4.63 (d, 1H, CH, J_{H1}, 7), 6.73-8.00 ppm (bm, 13H, ArH); uv (ethanol): λ max 326 nmr (ϵ 9700), 296 nm (ϵ 8100), 232 nm (8300).

Anal. Calcd. for C₂₄H₂₁BrN₂ (417.40): C, 69.00; H, 5.07; N, 6.71; Br, 19.14. Found: C, 68.86; H, 5.04; N, 6.66; Br, 19.35.

2-(p-Bromophenyl)-3-(1-naphthyl)-2,3,3a,4,5,6-hexahydrobenzo[6,7]-cyclohepta[1,2-c]pyrazole (VIC).

This compound was obtained as white prisms from cyclohexane (35%) mp 200-201°; ir (potassium bromide): C = N 1590 cm⁻¹; nmr ¹H nmr (carbon tetrachloride): δ 1.03-2.97 (bm, 7H, CH₂CH₂CH₂CH), 5.90 (d, 1H, CH, J_{Hz} 13), 6.67-7.90 ppm (bm, 11H, ArH); uv (ethanol): λ max 328 nm (ϵ 13400), 285 nm (ϵ 16000), 262 nm (18000), 226 nm (93000).

Anal. Calcd. for C₂₈H₂₃BrN₂ (467.40): C, 71.95; H, 4.95; N, 5.99; Cl, 17.11. Found: C, 71.68; H, 4.66; N, 5.54; Br, 16.81.

2-(p-Bromophenyl)-3-(p-chlorophenyl)-2,3,3a,4,5,6-hexahydrobenzo-[6,7]cyclohepta[1,2-c]pyrazole (VId).

This compound was obtained as white prisms from cyclohexane, (34%), mp 160-162°; ir (potassium bromide): C = N 1590 cm⁻¹; nmr ¹H nmr (carbon tetrachloride): δ 1.33-2.90 (bm, 7H, CH₂CH₂CH₂CH), 4.5 (d, 1H, CH, J_{Hz} 10), 6.13-7.66 ppm (bm, 8H, Ar-H); uv (ethanol): λ max 348 nm (ϵ 8600), 255 nm (ϵ 8200), 223 nm (12100).

Anal. Calcd. for $C_{24}H_{20}BrClN_2$ (451.8): C, 63.80; H, 4.46; N, 6.20; Cl, 7.84; Br, 17.68. Found: C, 63.59; H, 4.17; N, 6.18; Cl, 7.44; Br, 17.46.

Acknowledgement.

This work is part of M. Sc. thesis of N. H. Bahtiti submitted to Post Graduate College, Kuwait University, and was supported by Kuwait University Research Grant Number SC 028.

REFERENCE AND NOTES

- [1] N. R. El-Rayyes, G. H. Hovakeemian and H. Hammoud, J. Chem. Eng. Data, 29, 225 (1984).
 - [2] N. R. El-Rayyes and A. J. Al-Johary, ibid., 30, 500 (1985).
 - [3] N. R. El-Rayyes and N. A. Al-Awadi, Synthesis, 1028 (1985).
- [4] N. R. El-Rayyes and A. Al-Jawhary, J. Heterocyclic Chem., 23, 135 (1986)
- [5] N. R. El-Rayyes and H. M. Ramadan, J. Heterocyclic Chem., 24, 589 (1987).

- [6] I. Prejmeranu and I. Cimpeanu, Rom. Rev. Chim., 36, 894 (1985); Chem. Abstr., 104, 111332v (1986).
- [7] B. Lande and Le Quoc Khanh, Spectrochim. Acta, Part A, 31A, 1121 (1975).
- [8] D. A. Reddy, D. B. Reddy, N. S. Reddy and T. Balaji, *Indian J. Chem.* (B), 23, 983 (1984).
- [9] V. G. Thakare and K. N. Wadodkar, Indian J. Chem., Sect. B, 25(B), 610; Chem. Abstr., 106, 176236c (1987).
- [10] D. Srzic, Org. Mass Spectrom., 21, 411 (1986); Chem. Abstr., 106, 83852k (1987).
 - [11] R. Huttel, K. Franke and H. Martin, Chem. Ber., 93, 1433 (1960).
- [12] S. Rondestvedt and R. Change, J. Am. Chem. Soc., 77, 6532 (1955).
- [13] N. R. El-Rayyes, G. H. Hovakeemian and H. Hammoud, Org. Magn. Reson., 21, 245 (1983).
 - [14] S. A. Bause and H. L. Gurewitsch, Chem. Ber., 63, 2209 (1930).